- 
      SVM::C_SVC
      
 - 
       
The basic C_SVC SVM type. The default, and a good starting point
       
     
     - 
      SVM::NU_SVC
      
 - 
       
The NU_SVC type uses a different, more flexible, error weighting
       
     
     - 
      SVM::ONE_CLASS
      
 - 
       
One class SVM type. Train just on a single class, using outliers as negative examples
       
     
     - 
      SVM::EPSILON_SVR
      
 - 
       
A SVM type for regression (predicting a value rather than just a class)
       
     
     - 
      SVM::NU_SVR
      
 - 
       
A NU style SVM regression type
       
     
     - 
      SVM::KERNEL_LINEAR
      
 - 
       
A very simple kernel, can work well on large document classification problems
       
     
     - 
      SVM::KERNEL_POLY
      
 - 
       
A polynomial kernel
       
     
     - 
      SVM::KERNEL_RBF
      
 - 
       
The common Gaussian RBD kernel. Handles non-linear problems well and is a good default for classification
       
     
     - 
      SVM::KERNEL_SIGMOID
      
 - 
       
A kernel based on the sigmoid function. Using this makes the SVM very similar to a two layer sigmoid based neural network
       
     
     - 
      SVM::KERNEL_PRECOMPUTED
      
 - 
       
A precomputed kernel - currently unsupported.
       
     
     - 
      SVM::OPT_TYPE
      
 - 
       
The options key for the SVM type
       
     
     - 
      SVM::OPT_KERNEL_TYPE
      
 - 
       
The options key for the kernel type
       
     
     - 
      SVM::OPT_DEGREE
      
 - 
       
      
 
     
     - 
      SVM::OPT_SHRINKING
      
 - 
       
Training parameter, boolean, for whether to use the shrinking heuristics
       
     
     - 
      SVM::OPT_PROBABILITY
      
 - 
       
Training parameter, boolean, for whether to collect and use probability estimates
       
     
     - 
      SVM::OPT_GAMMA
      
 - 
       
Algorithm parameter for Poly, RBF and Sigmoid kernel types.
       
     
     - 
      SVM::OPT_NU
      
 - 
       
The option key for the nu parameter, only used in the NU_ SVM types
       
     
     - 
      SVM::OPT_EPS
      
 - 
       
The option key for the Epsilon parameter, used in epsilon regression
       
     
     - 
      SVM::OPT_P
      
 - 
       
Training parameter used by Episilon SVR regression
       
     
     - 
      SVM::OPT_COEF_ZERO
      
 - 
       
Algorithm parameter for poly and sigmoid kernels
       
     
     - 
      SVM::OPT_C
      
 - 
       
The option for the cost parameter that controls tradeoff between errors and generality - effectively the penalty for misclassifying training examples. 
       
     
     - 
      SVM::OPT_CACHE_SIZE
      
 - 
       
Memory cache size, in MB